Comparison of spectral derivative parameters for robust speech recognition

نویسندگان

  • Dusan Macho
  • Climent Nadeu
چکیده

Recently, spectral first-derivative parameters obtained by frequency filtering (FF) have been successfully used in both clean and noisy HMM speech recognition. In this paper, two types of spectral derivative parameters, the usual FF features and the relative spectral difference (RSD) features, are compared both between them and with their second-derivative versions. Additionally, another kind of recently introduced robust speech features, the SBCOR parameters, are related theoretically with the second-derivative RSD. By experimentally comparing all those types of features in the Aurora 2.0 noisy database framework, we conclude that the first-derivative parameters are preferable to the secondderivative ones (and to the MFCC) for both clean and noisy speech recognition, and the RSD parameters show the best average performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

Correlation between Auditory Spectral Resolution and Speech Perception in Children with Cochlear Implants

Background: Variability in speech performance is a major concern for children with cochlear implants (CIs). Spectral resolution is an important acoustic component in speech perception. Considerable variability and limitations of spectral resolution in children with CIs may lead to individual differences in speech performance. The aim of this study was to assess the correlation between auditory ...

متن کامل

Noise Robust Speech Recognition Using Prosodic Information

This paper proposes a noise robust speech recognition method for Japanese utterances using prosodic information. In Japanese, the fundamental frequency (F0) contour conveys phrase intonation and word accent information. Consequently, it also conveys information about prosodic phrase and word boundaries. This paper first proposes a noise robust F0 extraction method using the Hough transform, whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001